VIRUS BULLETIN

ANALYSIS 2
CHAMBER OF HORRORS

Peter Ferrie
Symantec Security Response, USA

Amongst the glut of viruses that we see every day, sometimes
there is one to surprise us. W32/Chamb is one of those: the
first virus to infect compiled HTML (CHM) files parasitically.

WHAT A CHAMPION

Compiled HTML files are Microsoft’s way of packaging
entire web pages — HTML pages, pictures, sounds, etc. —
into a single file that can be transported and viewed offline.
The environment for displaying the pages is replicated
exactly, since they are passed to the browser by the viewing
application. The problem is that the files (properly called
‘streams’ in this context) in the package are not written to
disk prior to being rendered, so anti-malware software is out
of luck if it does not support the CHM file format. At this
point, it should be noted that the file format is both complex
and undocumented, but we have reverse-engineered it. Let’s
have a look inside.

Compiled HTML files begin with the signature ‘ITSF’. That
signature stands for ‘InfoTech Storage File’, which is
Microsoft’s name for the library that is used to read and
write CHM files. Interestingly, when the name is shortened
to ‘IStorage’, we get the name of the programming interface
that is used to manage such files. More interestingly, the
IStorage interface is the same as the one used by OLE2
files, and which dates back to 1992. The only difference
between the OLE2 and CHM implementation is the
introduction of the InfoTech Storage System (ITSS) DLL
that handles the transparent compression and
decompression of the data inside CHM files.

IT’SS LIIKE THISS

Apart from the signature, the ITSF header contains nothing
of particular interest. Immediately following it are two
directories, divided into two quadwords each. The first
quadword in each directory contains the file offset of the
data in that block; the second quadword in each directory
contains the length of the data in that block.

The first directory block contains the file size, and a flag
that is set when a CHM file is first created. The purpose of
the flag is to indicate that the file is either a ‘work in
progress’ (when set), or has been finalised (when clear) and
no other modifications are allowed.

The second directory block begins with the signature
‘ITSP’. It contains information about the number and size

of the file list blocks, and the location of the indexes used to
access the data quickly in the file list blocks.

The file list blocks follow immediately. They begin with the
signature ‘PMGL’. The PMGL blocks contain the list of
stream names for the streams in the CHM file. There are
two types of stream in CHM files: system-data streams and
user-data streams. The system-data streams are recognisable
because their names begin with two colon characters ‘::’.
The user-data streams are recognisable because their names
begin with the forward slash character ‘/’. The reason for
the forward slash character is because these are pathnames.
These pathnames are relative to the root directory, which in
this case is contained within the CHM file. The stream
names are stored in alphabetical order to allow for easy
indexing. However, index blocks (which begin with the
signature ‘PMGI’) are added only when there are multiple
PMGL blocks.

There are two types of user-data stream: internal and
external. The internal user-data streams are recognisable
because their names begin with either a hash character ‘#’ or
a dollar sign ‘$’. Anything else is assumed to be an external
user-data stream.

Additionally, each PMGL block contains the identity of the
previous and next PMGL block, which means that the
PMGL blocks can be reordered in peculiar ways, though
this would need to be done manually.

CHAMPING AT THE BIT

Each stream name is followed by the dataspace index, the
offset of the data relative to the start of the dataspace, and
the size of the data. These values are encoded using a
seven-bit continuation method: the eighth bit in each byte
is used to specify that the value spans multiple bytes. The
other seven bits form seven bits of the value, in big-endian
format.

The location of the dataspace is found by searching within
the stream names for the system-data stream called
‘::DataSpace/NameList’. After decoding the offset of the
NamelList, we reach a list of names in zero-terminated
Unicode Pascal format (which seems extreme — either
zero-terminated or Pascal format alone is sufficient to
determine the length of the strings). Only two names should
appear in the list: Uncompressed and MSCompressed.

The data in the ‘Uncompressed’ stream are simply stored.
The data in the ‘MSCompressed’ stream are compressed
with Microsoft’s LZX compression method, which is also
one of the compression methods supported by the CAB file
format. However, unlike in CAB format where each file is
compressed individually, CHM files compress all of the
streams as though they were a single block (a so-called

o



‘solid’ archive). While this can increase the compression
ratio significantly, it can also increase the time required to
extract individual items significantly. Microsoft
compromised between these two characteristics, by
breaking the single large block into smaller blocks of
fixed size and compressing those individually. The
information about these smaller blocks is stored in a ‘reset
table’ (see below).

In order to decompress the data in the ‘MSCompressed’
stream, some additional streams must be retrieved first. One
of those is the ‘::DataSpace/Storage/MSCompressed/
ControlData’ stream, which contains the information about
the LZX compression parameters. The other two streams
are ‘::DataSpace/Storage/MSCompressed/Transform/
{7FC28940-9D31-11D0-9B27-00A0C91E9C7C}/
InstanceData/ResetTable’ and ‘::DataSpace/Storage/
MSCompressed/Content’. The ‘ResetTable’ stream is used
to control the periodical resetting of the decompression
state. By resetting the decompression state periodically, it
no longer becomes necessary to decompress the entire large
block to reach an arbitrary file. The reset table allows one to
begin the decompression at the nearest reset state prior to
the required offset, which can make the decompression
faster for some items. Finally, the ‘Content’ stream contains
the compressed data.

As an aside, there is an interesting extension in the
‘::DataSpace/Storage/MSCompressed/Transform/List’
stream. It appears that it was intended to provide support
for customised decompression and/or decoding layers,

but the stream data in existing CHM files are malformed —
the stream contains only a partial GUID in Unicode
character form, because the stream is too small to contain a
complete GUID. Judging by the stream length, it was
probably intended to hold an ASCII string and some small
additional data.

CHARM OFFENSIVE

So what does all of this have to do with W32/Chamb?
Actually, very little — since the virus makes use of the
IStorage interface, all of these details are handled by the
ITSS DLL, and all the virus has to do is call a few functions
to perform the required actions, much as any other file
infecting does for an ordinary file system.

In any case, the virus begins by searching the current
directory for CHM files to infect. The infection marker is
that the file has the read-only attribute set. Otherwise, the
file is considered a candidate for infection.

If the virus finds a file to infect, it creates a new file called
‘c’ in the current directory, which is used as a temporary
working file during the infection process. The temporary

VIRUS BULLETIN

file is required because the ITSS DLL does not allow
writing to a ‘finalised” CHM file.

The virus enumerates all of the storages and streams in the
file to infect, and writes each of them to the temporary file.
Anything within the original file that is neither a storage nor
a stream will be discarded during the infection process. The
ITSS DLL decompresses the streams automatically as they
are read, and compresses them as they are written.

For any stream whose name ends with *. HTM’, the virus
will append an object reference to a stream called ‘.exe’.
Upon completion of the enumeration, the virus will add
itself as the stream called ‘.exe’, thus ensuring that it will be
called whenever a page is viewed in the infected CHM file.

The ITSS DLL sorts the storage and stream names as they
are added. The result is that even though the ‘.exe’ stream is
the last to be added, thanks to its name, it will be among the
first in the PMGL blocks.

After adding the ‘.exe’ stream, the virus will copy the ‘c’
file over the original file, set the file date and time stamps to
those of the original file, and set the read-only attribute to
mark the file as infected.

Upon completion of the file enumeration, the virus simply
exits. The virus contains no payload, it is simply yet another
proof of concept from a virus author who specialises in
producing them.

THE CHASM OPENS WIDE

Compiled HTML files have been a favourite of malware
authors for several years already, but until now only in static
form. For the most part, they have been trojans that
downloaded other malware, but at least one family of
worms (W32.Blebla) used a CHM file in order to spread.
Now that we have a parasitic virus for CHM files, the
advice is the same as when the first WinHelp infectors
appeared in 1999: don’t press F1!

W32/Chamb

Type: Parasitic direct-action infector.
Infects: Windows CHM files.
Self-recognition: Read-only attribute is set.
Payload: None.

Delete infected files and restore
them from backups.

Removal:

o



